Name:	

1. A 1850 kg sedan stopped at a tragic light is struck from the rear by a compact car with a mass of 975 kg. The two cars become entangled (inelastic) as a result. If the compact car was moving at a velocity of 22 m/s, what is the velocity of the entangled mass after the collision?

Chart: Sedan compact car

$$M_1 = 1850 \text{ kg}$$
 $M_2 = 975 \text{ kg}$
 $V_{11} = 0 \text{ m/s}$
 $V_{21} = 22 \text{ m/s}$
 $V_{5} = ?$

Formula:	Mi Vii + Mz Vzi = (mi + mz) Vp
Plug in nun	mbers:
	$\frac{\text{mbers:}}{(850 \text{ kg})(0^{m}\text{ls})} + (975 \text{ kg})(22 \text{ m/s}) = (1850 + 975) \text{ kg}$ $\frac{\text{mbers:}}{(850 \text{ kg})(0^{m}\text{ls})} + 21450 \frac{\text{kgm}}{\text{s}} = 2825 \text{ kg}(0\text{g})$
	thu + 21450 kgm = 2825 kg (Uf)
	202
	2825 2823

2. A 0.015 kg marble sliding to the right at 0.225 m/s on a frictionless surface makes an elastic head on collision with a 0.024 kg bouncy ball moving to the left at 0.18 m/s. After the collision, the marble moves to the left at 0.16 m/s. What is the velocity of the bouncy ball after the collision?

Chart:	marble	borncyball
m. Vii =	= 0.015 kg 0.225 m/s	$m_2 = 0.024 \text{ kg}$ $V_2i = -0.18 \text{ m/s}$
-Vit	= -0.16 m/s	V2f = ?

.4 -		1	14.						
Formula:	nıvıi	+mz	V2 ($= m_i v_i$	4	+ m2	V2F		
Plug in num	nbers :					,	. (11 m/s) + (0.024 Kg (V)
(0.015	19)(0.7	225 m/s)	+(0.02	14 KgX - D-18	"/s) =	(0.01	5 kg) (0.	10.0)	,
.003	5			5	0.00	5	7 (0.		
	-0.0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ygm -	-0.0021	g von	2 +	(0.002	4 mg) V2	-
	+ 0.0	∞ 24		+0.0024					
	•00	1455	= 0.1	2024 V.				-	
Answer:	0.0	24	00%	5524	(V2 =	0.00	olm/5)	

(15)

- 3. A dry cleaner throws a 22 kg bag of laundry into a stationary 9.0 kg cart. The cart and the laundry bag begin movir,
- 3.0 m/s to the right (inelastic). What was the velocity of the bag before the collision?

Chart:
$$bag$$
 $cart$
 $M_1 = 224g$ $M_2 = 94g$
 $V_1 = ?$ $V_2 = 0$ M_3
 $V_4 = 3$ M_3

Formula:
$$M_1V_{11} + M_2V_{21} = (m_1 + m_2)V_{5}$$

Plug in numbers: $(22 \text{ M}) + 9 \text{ M}_{5}(0) = (22 + 9)$ m/s $22V = 31(3)$
 $22V = 93$
Answer: $V = 4.2 \text{ m/s}$

4. A 16.0 kg canoe moving to the left at 12 m/s makes an elastic head-on collision with a 4.0 kg raft moving to the right at 6.0 m/s. After the elastic collision, the raft moves to the left at 22.7 m/s. What is the velocity of the canoe after the collision?

Chart: Counce raft

$$m_1 = 16 \text{ kg} \quad m_2 = 4 \text{ kg}$$
 $V(i) = -12^{m/s} \quad V_{2i} = 6^{m/s}$
 $V_{1i} = ? \quad V_{2i} = -2267^{m/s}$

Formula:
$$M_1V_1i + M_2V_2i = M_1V_1 + M_2V_2f$$

Plug in numbers:
$$(16)(-12) + (4)(6) = (16)(7) + (4)(-22.7)$$

$$-(92 + 24) = 167 + -90.8$$

$$-168 = 167 - 90.8$$

$$+ 90.8$$

Answer: $-77.2 = 167$

$$16 = 167 - 4.8 \text{ m/s}$$