Hooke's Law Practice

Name: Roy

1. In an exercise machine, a spring with a constant of 120 N/m is pulled 0.8 m by a weightlifter. How much force is the spring exerting on the weightlifter?

Formula:	Plug in numbers:	Answer:
F=-KX	$F = (-120^{N}/m)(.8m)$	F= -96N

- 2. A sack of radishes with a mass of 0.2 kg is placed on a spring scale in the grocery store. The spring is stretched 0.032 m.
 - a. What is the weight of the sack of radishes?

Formula:	Plug in numbers:	Answer:
60-040%	Fw=(.2kg)(9.8m/s2)	1.96N
Fw=mg		

b. What is the spring constant?

Formula:	Plug in numbers:	Answer:
F=-KX	1.96N = -K (.032m) -032 -032	61.25N/m

3. A pinball launcher is pulled back 0.75m. If the spring constant is 700 N/m, what is the force of the spring on the player's hand?

Formula:	Plug in numbers:	Answer:
F=- XX	F= (700 V/m) (.75 m)	-523N

4. What is the period of a spring system with a spring constant of 200 N/m and a mass of 0.8 kg?

Formula:	Plug in numbers:	Answer:
T=2TT JA	T=2TT \ 200	•397s

5. What is the spring constant for a linear spring with a period of 0.45 seconds and a mass of 1.08kg?

Formula:	Plug in numbers:	Answer:
T a T M	0.45= 211 / R	
T=2TT) =	00 D = 211 V Z	210.6 N/m
	PT) .005 = 1.08	220.4 Mm
		also okay

6. What is the spring constant for a linear spring with a period of 5 seconds and a mass of 80 kg?

Formula:	Plug in numbers:	Answer:
T=2TT K	$(5)^{\frac{2}{2}} = 2\pi \sqrt{\frac{80}{K}}$ $(2\pi)^{\frac{2}{10}} = \frac{80}{K} = \frac{80}{K}$	126.37/m

7. Calculate the magnitude of the weight hanging on a spring system that has a spring constant of 400 N/m and a period of 3 seconds. (2 formuals)

