$$F_f = \mu F_N$$

Ff = Force of kinetic friction = measured in Newtons

 μ = coefficient of friction

F_N = Normal Force = measured in Newtons

1.) A 5kg box is sitting on a level surface. You push it across the floor. The kinetic friction acting against your exerted force is 57 N. What is the coefficient of friction?

Formula:	Plug in numbers:	Answer:
Fw=mg	Plug in numbers: Fw=mg (5 kg X 9.8) = 49N	
· · J	FC=MFN	1.17
Ff=MFN	57N=M(49N)	
	49 49	

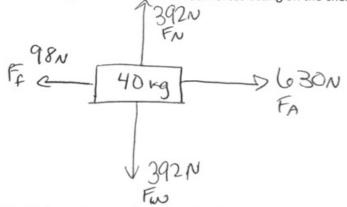
2.) You're pushing an object on a level surface whose coefficient of friction is 0.35 and the force of kinetic friction is 135N. What is the weight of the object you are pushing?

Formula:
$$F_{A} = MF_{N}$$

$$F_{N} = F_{W}$$

$$F_{N} = F_{W}$$
Plug in numbers:
$$\frac{135N = (.35)F_{N}}{.35}$$

$$F_{N} = F_{W}$$


$$F_{N} = 385.7N = F_{W}$$
Answer:
$$385.7N = F_{W}$$

3.) You are pushing an object across the grass that weighs 182N and has a coefficient of friction is .70. What is the force of kinetic friction?

	Formula:	Plug in numbers.	Allswel.
	FF=MFN	$F_{f} = (.70)(182N)$ $F_{f} = 127.4N$	127.4 N
- 1			

40kg

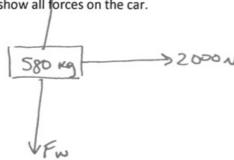
- 4.) You are pushing a chest of drawers across the room whose coefficient of friction is 0.25. You are exerting a force of
- a. Draw a free body diagram that shows all four forces acting on the chest of drawers.

b. Using your work from 4a, state the value of each:

Weight

Normal force

630N Applied force


Force of friction

$$F_f = \mu F_N F_F = (.25)(392)$$

Acceleration

$$\frac{13.3 \, \text{m/s}^2}{-638}$$
 Frut = ma
 $\frac{532}{40} = \frac{(40)(a)}{40}$

- 5.) You are pushing a 580 kg car across the road with a force of 2000 N. The acceleration of the car is 1.6 m/s².
- a. Draw a free body diagram to show all forces on the car.

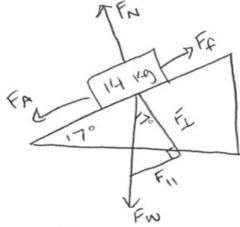
a=1.6m/3

b. Using your work from 5a, state the value of each:

5684N Weight

Normal force 5684N

Applied force


Coefficient of friction

$$F_{1072} = M_{5684}$$
 Fret = 928 N
 $F_{1072} = M_{5684}$ Fret = $F_{A} - F_{F}$ $F_{F} = 1072$
 $F_{1072} = M_{1072}$ $F_{1072} = F_{1072}$ $F_{1072} = F_{1072}$ $F_{1072} = F_{1072}$ $F_{1072} = F_{1072}$

Frictional force

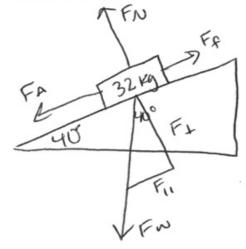
6.) A 14 kg box is sitting on an 17° incline. If the incline has a coefficient of friction of 0.23, at what acceleration will the

FBD:

M=.23

137,2N Weight:

Applied force:__ 40.1N


Frictional force:____ 30.2 N

0.71 m/s2 Acceleration:

Fret = ma
$$\frac{9.9}{14}$$
 = $\frac{14}{14}$ kg (a)

7.) A 32kg crate is sitting on a 40° incline. If the incline has a coefficient of friction of 0.12, at what acceleration will the crate slide down the incline?

FBD:

M=.12

313.6N Weight:

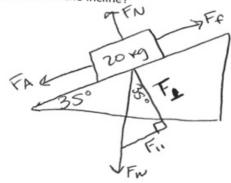
Fw=mg (32 kg)(9.8)

Normal force:

240.2N

F1 = Fw (05 0 = 313.6 (05 40

154.4N


Applied force: 28.8N

Frictional force:

3.9 m/s2 Acceleration:

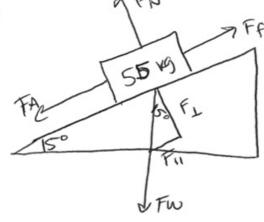
8.) A 20kg crate is sitting on a 35° incline. If the incline has a coefficient of friction of 0.31, at what acceleration will the crate slide down the incline?

FBD:

M=.31

Frictional force:
$$49.8 \,\text{N}$$
 $F_f = M \,\text{FN} = F_f = (.31)(160.6)$

Acceleration:
$$3.13 \, \text{m/s}^2$$
 Fret = ma


Fret =
$$F_A - F_F = 112.4 - 49.8 = 62.6 \text{ M}$$

Thet = $\frac{112.4 - 49.8}{20} = 62.6 \text{ M}$

Sky box is sitting on a 15° incline If the incline has a coefficient of friction of 0.7. In the first of 0

9.) A 55kg box is sitting on a 15° incline. If the incline has a coefficient of friction of 0.07, at what acceleration will the crate slide down the incline?

FBD:

539N Weight:

Normal force:

Applied force:

Frictional force:

1.87 m/s2 Acceleration:

Fret = FA - FE = 139.5 - 36.44 = 103.06 N 103.06 = 55 (a)